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Partial Rank Symmetry of Distributive
Lattices for Fences
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Abstract. Associated with any composition β = (a, b, . . .) is a correspond-
ing fence poset F (β) whose covering relations are

x1 � x2 � . . . � xa+1 � xa+2 � . . . � xa+b+1 � xa+b+2 � . . . .

The distributive lattice L(β) of all lower order ideals of F (β) is important
in the theory of cluster algebras. In addition, its rank generating func-
tion r(q; β) is used to define q-analogues of rational numbers. Kantarcı
Oğuz and Ravichandran recently showed that its coefficients satisfy an
interlacing condition, proving a conjecture of McConville, Smyth, and
Sagan, which in turn implies a previous conjecture of Morier-Genoud and
Ovsienko that r(q; β) is unimodal. We show that, when β has an odd num-
ber of parts, then the polynomial is also partially symmetric: the number
of ideals of F (β) of size k equals the number of filters of size k, when k is
below a certain value. Our proof is completely bijective. Kantarcı Oğuz
and Ravichandran also introduced a circular version of fences and proved,
using algebraic techniques, that the distributive lattice for such a poset is
rank symmetric. We give a bijective proof of this result, as well. We end
with some questions and conjectures raised by this work.
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1. Introduction

We will be studying the rank sequences for distributive lattices of certain
partially ordered sets (posets) called fences, defined as follows. Any terms or
notation from the theory of posets which are not defined here can be found in
the texts of Sagan [16] or Stanley [22]. A chain of length l is a totally ordered
set with l+1 elements. A composition of m is a sequence β = (β1, β2, . . . , βs) of
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Figure 1. The fence F (2, 4, 1)

positive integers, called parts, with
∑

i βi = m. In this setting, we write β |= m.
The corresponding fence F (β) is obtained by taking chains Si of length βi for
1 ≤ i ≤ s and identifying the maximal (respectively, minimal) elements of Si

and Si+1 for i odd (respectively, even). As an example, the fence F (2, 4, 1) is
displayed in Fig. 1. Placing the chains S1, S2, . . . , Ss from left to right as in
the figure, we label the elements of F (β) as x1, x2, . . . , xn from left to right.
We say that Si is an ascending or descending segment of F (β) depending on
whether i is odd or even, respectively. Note that if #F (β) = n, where the hash
symbol denotes cardinality, then β |= n − 1.

Let L(β) be the distributive lattice of lower order ideals of F (β). These
lattices can be used to compute mutations in an associated cluster algebra on
a surface with marked points. In fact there are (at least) six methods for doing
so, see [7,14,17,18,20,25,26]. Since L(β) is ranked, it has an associated rank
sequence r(β) : r0, r1, . . . , rn where

rk = number of elements at rank k in L(β).

for 0 ≤ k ≤ n. The corresponding rank generating functions

r(q;β) =
n∑

k=0

rkqk

were used by Morier-Genoud and Ovsienko to define q-analogues of rational,
and even real, numbers [12]. For example, for the fence in Fig. 1, the rank
generating function is

r(q; (2, 4, 1)) = 1 + 2q + 4q2 + 5q3 + 6q4 + 5q5 + 3q6 + 2q7 + q8,

and for the fence F (β) with β = (6, 2, 1, 2, 3, 1, 6) (see Fig. 4), it is

r(q;β) = 1 + 4q + 11q2 + 23q3 + 41q4 + 65q5 + 94q6 + 125q7 + 155q8 + 181q9

+ 198q10 + 205q11 + 200q12 + 182q13 + 156q14 + 125q15 + 94q16

+ 65q17 + 41q18 + 23q19 + 11q20 + 4q21 + q22.

Two well-studied properties of sequences b : b0, b1, . . . , bn are as follows.
Call the sequence symmetric if

bk = bn−k



Partial Rank Symmetry of Distributive Lattices for Fences

for 0 ≤ k ≤ n. The sequence is said to be unimodal if there is an index m, such
that

b0 ≤ b1 ≤ · · · ≤ bm ≥ bm+1 ≥ · · · ≥ bn.

Sequences satisfying these properties abound in combinatorics, algebra, and
geometry. See the survey articles of Stanley [21], Brenti [5], or Brändén [4] for
examples. In their previously cited paper, Morier-Genoud and Ovsienko made
the following conjecture which has now been proved, as we will discuss shortly.

Conjecture 1.1. [12]. For all β, the sequence r(β) is unimodal.

It is not true that r(β) is always symmetric. For example, when β = (1, 1),
we have r(β) : 1, 2, 1, 1. However, there are other recently studied properties
of sequences [1–3,6,19,24] which are satisfied by r(β). Call a sequence b :
b0, b1, . . . , bn top heavy if

bk ≤ bn−k

for 0 ≤ k < �n/2�, where �·� is the floor (round-down) function. Dually, the
sequence is bottom heavy if

bk ≥ bn−k

for 0 ≤ k < �n/2�. Call the sequence top interlacing if

b0 ≤ bn ≤ b1 ≤ bn−1 ≤ · · · ≤ b�n/2�,

where �·� is the ceiling (round-up) function. Top interlacing clearly implies
top heavy, and it also gives unimodality, since the inequalities imply that the
sequence is increasing up to b�n/2� and decreasing from b�n/2� onward. Some
papers use the term “alternately increasing,” but we prefer “top interlacing”,
because it emphasizes how the first and second halves of the sequence interlace.
Similarly, define a sequence to be bottom interlacing if

bn ≤ b0 ≤ bn−1 ≤ b1 ≤ · · · ≤ b�n/2�.

As before, bottom interlacing implies both bottom heavy and unimodal. Mc-
Conville et al. [13] conjectured the following strengthening of Conjecture 1.1,
which has recently been proved by Kantarcı Oğuz and Ravichandran [11] using
induction and algebraic techniques.

Theorem 1.2. [11]. Let β = (β1, . . . , βs).
(a) If s = 1, then r(β) = (1, 1, . . . , 1).
(b) If s is even, then r(β) is bottom interlacing.
(c) Suppose s ≥ 3 is odd and let β′ = (β2, . . . , βs−1).

(i) If β1 > βs, then r(β) is bottom interlacing.
(ii) If β1 < βs, then r(β) is top interlacing.
(iii) If β1 = βs, then r(β) is symmetric, bottom interlacing, or top inter-

lacing depending on whether r(β′) is symmetric, top interlacing, or
bottom interlacing, respectively.

The purpose of the present work is to show that, even though r(β) is
not always symmetric, it exhibits at least partial symmetry if there is an odd
number of segments. In particular, our main result is as follows.
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Figure 2. The circular fence F (2, 1, 1, 2)

Theorem 1.3. Let β = (β1, β2, . . . , βs) where s is odd and r(β) : r0, r1, . . . , rn.
For all k ≤ min{β1, βs}, we have

rk = rn−k.

Kantarcı Oğuz and Ravichandran’s proof of Theorem 1.2 relied on cer-
tain posets obtained by making the Hasse diagram of a fence into a cycle. Let
β = (β1, β2, . . . , β2�) |= n be a composition with an even number of parts, so
that the fence F (β) has n + 1 elements x1, . . . , xn+1, begins with an ascend-
ing segment, and ends with a descending segment. Define the corresponding
circular fence to be the poset F (β) with n elements obtained by identifying
x1 and xn+1. For example, F (2, 1, 1, 2) is displayed in Fig. 2. Denote the rank
sequence of the lattice of lower order ideals of F (β) by r(β). Using algebraic
manipulation of recurrence relations, Kantarcı Oğuz and Ravichandran proved
the following result, and left finding a bijective proof as an open problem.

Theorem 1.4. [11]. Let β = (β1, β2, . . . , βs) where s is even. Then, r(β) is
symmetric.

The rest of this paper will be structured as follows. In the next section,
we will present a totally bijective proof of Theorem 1.3. Section 3 will be
devoted to showing that our bijection can be used, with minor modifications,
to prove Theorem 1.4 as well. We will end with a section of comments and
open questions.

2. Proof of Partial Symmetry for Fences

To give our bijective proof of Theorem 1.3, we will need some definitions and
notation. In a poset, an ideal will always be a lower order ideal. We will also use
the terms upper order ideal and filter interchangeably. Consider a composition
β = (β1, β2, . . . , β2�+1) with an odd number of parts. For a fence F (β) and
k ≥ 0, we let

Ik(β) = {I | Iis a lower order ideal of F (β) with #I = k}
and

Uk(β) = {U | U is an upper order ideal of F (β) with #U = k}.

To prove Theorem 1.3, it suffices to construct a bijection Φ : Ik(β) → Uk(β)
for all k ≤ min{β1, β2�+1}. This is because, with the notation of the theorem,
we have #Ik(β) = rk and #Uk(β) = rn−k.
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Figure 3. The gate G(2, 3, 1)

2.1. Bijection φ for Gates

To define Φ, we will first construct a bijective map φ on certain ideals of a
particular subposet of a fence obtained by removing the first and last seg-
ments, and requiring ascending segments to have length one. For an arbitrary
composition δ = (δ1, δ2, . . . , δ�), let the corresponding gate be

G(δ) = F (δ1, 1, δ2, 1, . . . , δ�−1, 1, δ�)∗,

where the star indicates poset dual. The gate G(2, 3, 1) is shown in Fig. 3. We
will use the same terminology for gates as we do for fences. Note that G(δ)
begins and ends with a descending segment. Let Di denote the ith descending
segment from the left, which has length δi. The ideals of a gate which corre-
spond to those of bounded size in the corresponding fence are as follows. If
G(δ) has � descending segments, then call an ideal I of this gate restricted if
#(I ∩D1) ≤ δ1 and #(I ∩D�) 
= 1. In other words, I is restricted if it does not
contain the maximal element on D1, and if it contains the minimal element
on D�, then it also contains the element above it. Let

Ir(δ) = {I | I is a restricted ideal of the gate G(δ)}.

Call a filter U of G(δ) restricted if #(U ∩ D1) 
= 1 and #(U ∩ D�) ≤ δ�.
Equivalently, U∗ is a restricted ideal of G(δ)∗, which is isomorphic to G(δR)
where

δR = (δ�, δ�−1, . . . , δ2, δ1)

is the reversal of δ. In general, the reversal of any sequence b will be denoted by
bR. Note the difference between our use of r for restricted and R for reversal.
The notation for restricted filters is as expected

Ur(δ) = {U | U is a restricted filter of the gate G(δ)}.

We will describe a cardinality-preserving bijection

φ : Ir(δ) → Ur(δ).

We will need some more notation and terminology. Given a sequence d :
d1, d2, . . . , d�, we use the floor symbol

�d� = �d1, d2, . . . , d��
to denote the subset of G(δ) (if it exists) consisting of the smallest di elements
on segment Di for 1 ≤ i ≤ �. It is easy to see that �d� exists and is a restricted
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lower order ideal if and only if the following conditions hold. We use the no-
tation [m,n] for the interval of integers between m and n inclusive, which is
shortened to [n] if m = 1. The restricted ideal conditions are

I1 (existence) for i ∈ [�], we have 0 ≤ di ≤ δi + 1,
I2 (lower order ideal) for i ∈ [2, �]: if di = δi + 1, then di−1 > 0,
I3 (restricted) d1 ≤ δ1 and d� 
= 1.

Similarly, we use ceiling notation

�e� = �e1, e2, . . . , e��
to denote the subset of G(δ) containing the largest ei elements on segment i
for 1 ≤ i ≤ �. Here are the conditions for �e� to exist and be a restricted filter:
U1 (existence) for i ∈ [�], we have 0 ≤ ei ≤ δi + 1,
U2 (upper order ideal) for i ∈ [� − 1]: if ei = δi + 1, then ei+1 > 0 for,
U3 (restricted) e1 
= 1 and e� ≤ δ�.

A factor of the sequence d : d1, d2, . . . , d� is a subsequence di, di+1, . . . , dj

of consecutive elements. If the di’s are nonnegative integers, then a block is a
maximal factor of positive integers. For example, the sequence

d : 6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2

has three blocks, namely, 6, 1, 1, 1; 4, 5, 1, 1; and 3, 1, 2. The factor of trailing
ones of a block B is the (possibly empty) maximal factor T of B consisting
only of ones, such that there is no element of B larger than one to its right.
In our example, the blocks have three, two, and no trailing ones, respectively.
Note that if �d1, d2, . . . , d�� is a restricted ideal, then any nonempty factor T of
trailing ones must be followed by a 0. This follows directly from the definition
of T unless its block contains the last element d�. And in that case, since the
ideal is restricted, we must have d� ≥ 2, so that no trailing ones are possible.

One can now construct φ(�d1, d2, . . . , d��) as follows. Consider each block
B of the sequence d1, d2, . . . , d�, and factor it as the concatenation B = B′T
where T is B’s factor of trailing ones and B′ is the rest of B. The map φ
performs the following two steps:
P1 For each nonempty factor T of trailing ones, exchange T with the 0 to

its right.
P2 For each B′ with #B′ ≥ 2, decrease the rightmost such entry by 1 and

increase the leftmost one by 1.

Intuitively, if any descending segment is empty and any segments imme-
diately to its left contain only single elements of the ideal, then these elements
are each pushed to the right by one segment. And if there are any consecutive
sequences of nonzero elements which were not pushed right, then the right-
most element of each such sequence is moved to the segment of the leftmost
element. (Therefore, if the sequence only consists of one element, then the net
effect is no movement at all.) Continuing our example, the three blocks have
3, 2 and 0 trailing ones and B′ equal to 6; 4, 5; and 3, 1, 2 from left to right.
Therefore, after P1, we have the sequence

6, 0, 1, 1, 1, 4, 5, 0, 1, 1, 0, 3, 1, 2.
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Now, applying P2 gives

φ(�6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2�) = �6, 0, 1, 1, 1, 5, 4, 0, 1, 1, 0, 4, 1, 1�.
Note that the construction of φ(�d�) does not depend on the lengths δi.

For the following proof, it will be convenient to extend the reversal op-
erator as follows. If �d� is an ideal of G(δ), then let

�d�R = �dR�,
where �dR� is being considered as a filter of G(δR). Similarly, let

�e�R = �eR�.
Theorem 2.1. The map φ : Ir(δ) → Ur(δ) defined by P1 and P2 is a
cardinality-preserving bijection.

Proof. Let δ = (δ1, δ2, . . . , δ�), and suppose we are given d : d1, d2, . . . , d� with
�d� ∈ Ir(δ). Let φ(�d�) = �e�, where e : e1, e2, . . . , e�.

We first show that φ is well defined in that #�d� = #�e� and �e� ∈ Ur(δ).
The first statement is clear, since P1 does not change cardinalities, and every
entry increased by one in P2 is offset by an entry decreased by one. For the
second statement, we need to check U1–U3. The truth of U1 follows from
the fact that d satisfies I1 unless di = δi + 1 and di is increased in step P2.
However, if i = 1, then this contradicts I3, and if i > 1, then this contradicts
I2, since di was not the first nonzero entry in its block. If U2 is violated, then
ei = δi + 1 and ei+1 = 0. Therefore, di must have been the last entry of some
B′. If #B′ = 1, then di−1 = 0. However, then ei = di ≤ δi, because if we had
di = δi + 1, then �d� would not be an ideal, since it violates I2. On the other
hand, if #B′ > 1, then by P2, we have ei = di − 1 ≤ δi, which is another
contradiction. Thus, �e� is a filter. Finally, we must verify U3. For the first
condition, suppose, towards a contradiction, that e1 = 1, and let B′ be the
initial factor of the block B containing d1 ≥ 1. If e1 = d1, then by P2, we must
have #B′ = 1. But then, B′ would have been included in the trailing ones
of B and moved to the right in P1. The other possibility is e1 = d1 + 1 ≥ 2,
again a contradiction. Thus, the first condition holds. To prove that the second
condition is true, assume the opposite which is that e� = δ�+1. Clearly, e� ≥ 2.
It follows that d� must have been part of a block B with no trailing ones, so
that B′ = B. If #B′ = 1, then d� = e� = δ� + 1. By P2, this forces d�−1 
= 0.
But then, d� was not the only element in B′ which is impossible. If #B′ ≥ 2,
then, by P2 again, e� = d� − 1 ≤ δ�. This final contradiction finishes the proof
that U3 holds and that φ is well defined.

To show that φ is bijective, we construct φ−1 : Ur(δ) → Ir(δ). If �e� ∈
Ur(δ), then define

φ−1(�e�) = φ(�e�R)R,

where, on the right-hand side, the map being applied is φ : Ir(δR) → Ur(δR).
Because reversal is an involution, showing that φ−1 is well defined is equivalent
to showing that �e� is a restricted filter if and only if �e�R is a restricted ideal.
However, this follows immediately by comparing I1–I3 with U1–U3.



S. Elizalde and B. E. Sagan

To show that φ−1 is indeed the inverse of φ, we claim that the factors of
ones moved by φ are the same as those moved by φ−1. We will only show that
if a factor is moved by φ, then it is moved by φ−1, as the reverse implication is
similar. Let T be a factor of trailing ones in �d�. After T moves when applying
φ, it either becomes a block itself or merges with B′ where B is the block which
was to its right. In the first case, T is clearly a block of ones in �e� = φ(�d�)
and so also in �e�R. Thus, it will be moved when computing φ−1(�e�). In the
second case, it suffices to show that the leftmost entry di of B becomes ei ≥ 2
in �e�, since then T becomes a factor of trailing ones in �e�R. If #B = 1, then
ei = di ≥ 2, since, otherwise, di = 1 would have been one of the trailing ones
of the original block and moved to the right. On the other hand, if #B ≥ 2,
then by P2, we have ei = di + 1 ≥ 2, which is again what we wished to show
and completes the second case of the claim.

Because of the claim, φ−1 acts as a step-by-step inverse of φ. Indeed,
moving factors right in �d� corresponds to moving the same factors left in �e�.
And this is equivalent to moving them right in �e�R by applying φ, while the
final reversal brings the factor back to its original position. Also, what P2 does
to the two ends of the remains B′ of a block B are inverses of each other. This
shows that B′ will also be restored to itself by φ−1, so that this map does
indeed undo what was done by φ. This completes the proof. �

2.2. Bijection Φ for Fences

We will now show how we can use the bijection φ for gates to construct the
desired bijection Φ for fences. We chose this path, because φ is simpler to
describe than Φ and yet captures the most important movement of elements
in the algorithm, which is on the descending segments.

Let β = (β1, β2, . . . , βs) |= n−1 with s odd. Write s = 2�+1, where � ≥ 0.
Our algorithm will be simplest to state using somewhat different parameters
for the corresponding fence F = F (β). These constants first appeared in the
work of Elizalde et al. [8] concerning rowmotion on fences. Call the elements
of F which appear on two segments shared and all other elements unshared.
It will be convenient to use different notation and conventions for ascending
and descending segments. Let the ascending segments of F be A1, A2, . . . , A�+1

from left to right, and similarly, let D1,D2, . . . , D� be the descending segments.
Let

δi = 1 + (the number of unshared elements on Di) (1)

for 1 ≤ i ≤ �. Thus, δi = β2i. Similarly, let

αi = 1 + (the number of unshared elements on Ai) (2)

for 1 ≤ i ≤ � + 1. It follows that αi = β2i−1 for 2 ≤ i ≤ �, α1 = β1 + 1,

and α�+1 = βs + 1. For i ∈ [� + 1], denote by Ãi the chain consisting of the
unshared elements on segment Ai. Note that #Ãi = αi − 1 and #Di = δi + 1,
and that each element from F appears in exactly one of the Ãi or Di.

We encode ideals I of F (β) by pairs of sequences a : a1, a2, . . . , a�+1 and
d : d1, d2, . . . , d�, where ai = #(I ∩ Ãi) and di = #(I ∩ Di) for all i. It is
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sometimes convenient to visualize these sequences as placed one above the
other, with entries interlaced, that is

⌊
a
d

⌋

=
⌊

a1 a2 · · · a� a�+1

d1 d2 · · · d�

⌋

.

Similarly, we encode filters U of F (β) by pairs of sequences b : b1, b2, . . . , b�+1

and e : e1, e2, . . . , e�, where bi = #(U ∩ Ãi) and ei = #(U ∩ Di) for all i, and
we write

⌈
b
e

⌉

=
⌈

b1 b2 · · · b� b�+1

e1 e2 · · · e�

⌉

.

A pair of sequences �a
d� as above encodes an ideal of F (β) if and only if

the following conditions hold:

IF1 for i ∈ [� + 1], we have 0 ≤ ai ≤ αi − 1,
IF2 for i ∈ [�], we have 0 ≤ di ≤ δi + 1,
IF3 for i ∈ [�]: if di = δi + 1, then ai = αi − 1, and if i > 1, then di−1 > 0, as

well,
IF4 for i ∈ [�]: if ai+1 > 0, then di > 0.

Note that the size of the ideal is
∑

i ai +
∑

i di.

To obtain the conditions for � b
e� to encode a filter of F (β), note that this

happens if and only if

� b
e�R def= � bR

eR � (3)

encodes an ideal of F (βR). Similarly, define

�a
d�R = �aR

dR �. (4)

The following is equivalent to � b
e� being a filter of F (β):

UF1 for i ∈ [� + 1], we have 0 ≤ bi ≤ αi − 1,
UF2 for i ∈ [�], we have 0 ≤ ei ≤ δi + 1,
UF3 for i ∈ [�]: if ei = δi +1, then bi+1 = αi+1 −1, and if i < �, then ei+1 > 0,

as well,
UF4 for i ∈ [�]: if bi > 0, then ei > 0.

Next, we define a bijection Φ : Ik(F ) → Uk(F ), where

k ≤ min{β1, βs} = min{α1, α�+1} − 1.

Given an ideal of Ik(F ) encoded by a pair of sequences �a
d�, we apply the

following steps, where we use x := y to mean that x is to be assigned the value
y.

PH1 For every i ∈ [�], such that di = 1 and ai+1 < αi+1 − 1, let di := 0 and
ai+1 := ai+1 + 1.

PH2 Decompose d : d1, d2, . . . , d� into factors by splitting between di−1 and di

for each i ∈ [2, �], such that ai < αi − 1. Apply φ (defined by P1–P2) to
each factor to obtain a sequence e. Let b := a.

PH3 For every i ∈ [�], such that ei = 0 and bi > 0, let ei := 1 and bi := bi − 1.
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Define

Φ(�a
d�) = � b

e�.
For example, let F = F (6, 2, 1, 2, 3, 1, 6) be the fence in Fig. 4, which

has α : 7, 1, 3, 7 and δ : 2, 2, 1. Label its elements x1, x2, . . . , x22 from left to
right, and consider the ideal I = {x9, x10, x11, x12, x13, x16} ∈ I(F ), which is
encoded by

⌊
a
d

⌋

=
⌊

0 0 1 0
1 3 1

⌋

.

In the top of Fig. 4, the elements of I are circled. Applying PH1 yields

0 0 1 1
1 3 0 .

In step PH2, the sequence 1, 3, 0 is split into two factors: the first factor is 1, 3
and the second factor is 0. Applying φ to each one, we get

0 0 1 1
2 2 0 .

Finally, applying PH3 yields
⌈

b
e

⌉

=
⌈

0 0 0 1
2 2 1

⌉

,

which encodes the filter U = {x7, x8, x10, x11, x15, x21} ∈ I(F ), depicted in the
bottom of Fig. 4.

We now prove the main theorem of this section.

Theorem 2.2. Let β = (β1, β2, . . . , βs) where s = 2� + 1 and

k ≤ min{β1, βs}. (5)

The map Φ : Ik(β) → Uk(β) defined by PH1–PH3 is a bijection.

Proof. We maintain the notation established in the lead up to this theorem.
To show that Φ is well defined, we need to first demonstrate that φ can be
applied to the factors determined by PH2 in that they satisfy I1–I3. The first
two conditions follow directly from the fact that I = �a

d� is an ideal. For I3,
we begin with d1 in the first factor and assume, towards a contradiction, that
d1 = δ1 + 1. But then, IF3 forces a1 = α1 − 1. Therefore

k = #I ≥ a1 + d1 ≥ α1 = β1 + 1,

which contradicts (5). Now, consider d� in the last factor and suppose, again
towards a contradiction, that d� = 1 when φ is about to be applied. Note
that we must also have a�+1 < α�+1 − 1, since otherwise we would again
contradict (5) similarly to our first case. But under these conditions, PH1
would have set d� to 0, which is again a contradiction. To finish verifying I3,
we must consider the splits between di−1 and di for 2 ≤ i ≤ �, which occur
when ai < αi − 1 in PH2. If di−1 = 1, then we must have had ai < αi − 1 to
start with, since ai can only increase in value, so PH1 would have again set
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Figure 4. Computing Φ({x9, x10, x11, x12, x13, x16}) in
F (6, 2, 1, 2, 3, 1, 6)

di−1 to 0. If di = δi + 1, then IF3 forces ai = αi − 1, which contradicts the
assumption in PH2. Therefore, in all cases, φ can be applied.

That Φ preserves cardinality follows from the fact that φ does and that
the assignments in steps PH1 and PH3 keep the sum of the sequences equal.
Therefore, to finish the proof that Φ is well defined, we need to show that
Φ(�a

d�) = � b
e� satisfies UF1–UF4. The first two items follow by the equalities

and bounds imposed in PH1 and PH3 before reassignment, and from the fact
that the image of φ satisfies U1. To check UF3, suppose ei = δi+1. The “and if”
clause is true, because applying φ gives a sequence satisfying U2. For the first
clause, we will see that having bi+1 < αi+1 − 1 leads to a contradiction. Note
that the value of bi+1 could not have been lowered in PH3, since ei = δi+1 
= 0.
Therefore, we have ai+1 = bi+1 < αi+1 − 1, and the condition in PH2 forces
ei to be the end of a factor. However, since φ maps to restricted filters, we
have that ei ≤ δi by U3, which is the desired contradiction. Finally, we tackle
UF4 by contradiction again, assuming bi > 0 and ei = 0. If this had been the
case, then ei would have been reassigned to be 1 in PH3. This completes the
verification that Φ is well defined.
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As with φ, we define Φ−1 to be

Φ−1(� b
e�) = Φ(� b

e�R)R. (6)

As in the demonstration of Theorem 2.1, the proof that Φ−1 is well defined
follows from the fact that Φ is.

We first prove that Φ−1 ◦ Φ is the identity. We first need to show that if
Φ(�a

d�) = � b
e�, then d gets broken into factors when applying Φ at the same

indices as eR when applying Φ−1. We will show that every break point of
d becomes a break point of eR, again leaving the reverse implication to the
reader. If there was a break between di−1 and di in applying Φ, then we must
have ai < αi − 1 in step PH2. After applying PH3, we have bi ≤ ai < αi − 1.
Next, PH1 is applied to � b

e�R as the first step of Φ−1. If bi does not change
at this step, then PH2 will still split eR between ei and ei−1 because of the
previous inequality. If bi does increase during PH1, then it must have been,
because ei = 1 at this stage. However, di was first in its factor before applying
φ, and so, by U3, we had ei 
= 1 after PH2 was applied as part of Φ. Therefore,
the only way to have ei = 1 at the end of PH3 is if we also decreased bi by
one in that step. In this case, bi < ai < αi − 1, which makes bi < αi − 1 after
adding one in PH1. Therefore, PH2 will still break at the same spot.

It is now easy to see that Φ−1 will act as a step-by-step inverse for Φ.
Indeed, applying PH1 for Φ−1 undoes what PH3 did for Φ. By what we proved
in the previous paragraph and the definition of φ−1, the steps PH2 for Φ and
Φ−1 cancel each other out. And finally, step PH3 for Φ−1 cancels out PH1 in
Φ.

To complete the proof, we show that Φ−1 ◦ Φ is the identity map. This
follows from Eq. (6) and the fact that Φ−1 ◦ Φ is the identity, since:

Φ(Φ−1(� b
e�)) = Φ(Φ(� b

e�R)R) = Φ−1(Φ(� b
e�R))R = (� b

e�R)R = � b
e�

as desired. �

3. Proof of Symmetry for Circular Fences

We will now show how slight modifications of φ and Φ can be used to give a
bijective proof of Theorem 1.4. We use the notation

I(β) = {I | I is a lower order ideal of F (β)}
and

U(β) = {U | U is an upper order ideal of F (β)}.

Our goal is to construct a cardinality-preserving bijection Φ : I(β) → U(β).
As before, we start with the case where ascending segments have length one.

3.1. Bijection φ for Narrow Circular Fences

We call a circular fence F (β) narrow if its composition has the form β =
(1, δ1, 1, δ2, . . . , 1, δ�). Let Di be the descending segment of length δi. Any
I ∈ I(β) can be expressed as I = �d1, d2, . . . , d��, where di = #(I ∩ Di)
for i ∈ [�], satisfying the following conditions:
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ICN1 (existence) for i ∈ [�], we have 0 ≤ di ≤ δi + 1,
ICN2 (ideal) for i ∈ [�]: if di = δi + 1, then di−1 > 0, where subscripts are

taken modulo �.

Similarly, the conditions for filters U = �e1, e2, . . . , e�� of F (β) are as follows:
UCN1 (existence) for i ∈ [�], we have 0 ≤ ei ≤ δi + 1,
UCN2 (filter) for i ∈ [�]: if ei = δi + 1, then ei+1 > 0, where subscripts are

taken modulo �.

To define φ, it will be useful to define a circular sequence 〈d〉 :
〈d1, d2, . . . , d�〉, which is obtained from the linear sequence d : d1, d2, . . . , d�

by considering d� as followed by d1. Equivalently, the subscripts in a circular
sequence are to be treated modulo � and this will be our convention in all def-
initions pertaining to circular sequences. Note our calling ordinary sequences
linear to distinguish them from the circular case.

A factor of 〈d〉 is a subsequence of the form di, di+1, . . . , dj . Note that
this is a linear sequence, even though it may wrap around to the beginning
of d. Call d positive if all its elements are positive. If d is not positive (and so
has at least one zero), then a block B of 〈d〉 is a maximal factor of positive
elements. For example, the circular sequence

〈d〉 = 〈7, 1, 1, 0, 5, 1, 0, 0, 3〉
has blocks 5, 1 and 3, 7, 1, 1. Now, the trailing ones of a block are defined
exactly as in the linear case. Conveniently, for circular sequences, every factor
of trailing ones is followed by a zero, which is why we do not need the notion
of restriction for ideals in circular fences. In our example, block 5, 1 has one
trailing one and block 3, 7, 1, 1 has two.

Now, suppose we are given I = �d1, d2, . . . , d�� ∈ I(β) with F (β) narrow.
If d : d1, d2, . . . , d� is not positive, then we define φ(I) by applying P1 and P2
for φ to 〈d1, d2, . . . , d�〉. Note that this is well defined, since factors of a circular
permutation are linear. Returning to our example, we have

I = �7, 1, 1, 0, 5, 1, 0, 0, 3� P1�→ 〈7, 0, 1, 1, 5, 0, 1, 0, 3〉 P2�→ �6, 0, 1, 1, 5, 0, 1, 4� = φ(I).

If d is positive, then we let

φ�d1, d2, . . . , d�� = �d1, d2, . . . , d��.
The proof of the next result is very similar to that of Theorem 2.1, so the

demonstration is omitted.

Theorem 3.1. Let β = (1, δ1, 1, δ2, . . . , 1, δ�). The map φ : I(β) → U(β) defined
above is a cardinality-preserving bijection. �

3.2. Bijection Φ for Circular Fences

Now, consider an arbitrary circular fence F = F (β), where β = (β1, β2, . . . , β2�)
|= n. We again use Ai and Di to denote the corresponding ascending and
descending segments, noting that now there are only � ascending segments.
Define δi and αi using Eqs. (1) and (2), respectively. We now have δi = β2i

and αi = β2i−1 for all i (unlike the linear case, there are no exceptions).
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Given I ∈ I(β), we continue to let ai = #(I ∩ Ãi) and di = #(I ∩ Di),
where Ãi also retains its previous meaning. The notation for I will be

⌊
a
d

⌋

=
⌊

a1 a2 · · · a� a1

d1 d2 · · · d�

⌋

. (7)

Note the repetition of a1 in the top line, which will make our future definitions
simpler. The encoding for filters is changed mutatis mutandis.

We can now easily write down the conditions for being an ideal of a
circular fence in terms of the ai and di (all subscripts are modulo �):

IC1 for i ∈ [�], we have 0 ≤ ai ≤ αi − 1,
IC2 for i ∈ [�], we have 0 ≤ di ≤ δi + 1,
IC3 for i ∈ [�]: if di = δi + 1, then ai = αi − 1 and di−1 > 0,
IC4 for i ∈ [�]: if ai > 0, then di−1 > 0.

Similarly, � b
e� being a filter is equivalent to the following conditions:

UC1 for i ∈ [�], we have 0 ≤ bi ≤ αi − 1,
UC2 for i ∈ [�], we have 0 ≤ ei ≤ δi + 1,
UC3 for i ∈ [�]: if ei = δi + 1, then bi+1 = αi+1 − 1 and ei+1 > 0,
UC4 for i ∈ [�]: if bi > 0, then ei > 0.

We now modify PH1–PH3 for the circular case. Given �a
d� as in (7),

perform the following operations. In all steps, the indices are taken modulo �.

PHC1 For every i ∈ [�], such that di = 1 and ai+1 < αi+1 − 1, let di := 0 and
ai+1 := ai+1 + 1.

PHC2 If there exists some index i ∈ [�] with ai < αi − 1, then split 〈d〉 into
factors between di−1 and di for each such i and apply φ to each factor.
If no such i exists, then compute φ(�d�). In both cases, let e be the
resulting sequence. Let b := a.

PHC3 For every i ∈ [�], such that ei = 0 and bi > 0, let ei := 1 and bi := bi−1.

Define

Φ(�a
d�) = � b

e�.
Let us look at two examples which will illustrate the two cases in step

PHC2. First, consider the circular fence F (β) where β = (2, 1, 2, 3, 1, 2, 2, 1),
so

α : 2, 2, 1, 2 and δ : 1, 3, 2, 1,

as illustrated in Fig. 5. Let I = {x1, x2, x3, x4, x5, x9, x12} ∈ I(β), which is
encoded by

⌊
a
d

⌋

=
⌊

1 1 0 0 1
2 1 1 1

⌋

.

This ideal is indicated by the circled nodes in the top poset in Fig. 5. Apply-
ing PHC1 yields

1 1 0 1 1
2 1 0 1 .
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Figure 5. Computing Φ({x1, x2, x3, x4, x5, x9, x12}) in F (2, 1, 2, 3, 1, 2, 2, 1)

In step PHC2, since ai = αi − 1 for all i, we simply apply φ to the sequence
�d� = �2, 1, 0, 1�, which gives �e� = �1, 0, 1, 2�. Finally, applying PHC3 to

1 1 0 1 1
1 0 1 2

yields
⌈

b
e

⌉

=
⌈

1 0 0 1 1
1 1 1 2

⌉

,

which encodes the filter U = {x1, x2, x3, x6, x10, x13, x14} ∈ U(β), as illustrated
in the bottom poset in Fig. 5.

If, instead, we apply Φ to the ideal I = {x1, x2, x3, x4, x9, x12} ∈ I(β),
which is encoded by

⌊
a
d

⌋

=
⌊

1 0 0 0 1
2 1 1 1

⌋

,

step PHC1 yields

1 0 0 1 1
2 1 0 1 .

Now, in step PHC2, we have a2 = 0 < 1 = α2 − 1, so we split 〈d〉 between
d1 = 2 and d2 = 1. Applying φ to the resulting linear factor 1, 0, 1, 2, we obtain
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the sequence 0, 1, 2, 1, and so e : 1, 0, 1, 2. Finally, applying PHC3 to

1 0 0 1 1
1 0 1 2

does not produce any change, and so
⌈

b
e

⌉

=
⌈

1 0 0 1 1
1 0 1 2

⌉

,

which encodes the filter U = {x1, x2, x3, x10, x13, x14} ∈ U(β).
To prove that Φ is bijective, we will use the definition of reversal for

ideals given by (4), remembering that for circular fences a1 appears twice in
a. Therefore

⌊
a1 a2 · · · a� a1

d1 d2 · · · d�

⌋R

=
⌈

a1 a� · · · a2 a1

d� d�−1 · · · d1

⌉

.

Similarly, reversal for filters is given by (3).

Theorem 3.2. Let β = (β1, β2, . . . , β2�). The map Φ : I(β) → U(β) defined
by PHC1–PHC3 is a cardinality-preserving bijection.

Proof. We will use the notation we have established above. If there is an index
i in step PHC2 with ai < αi −1, then this map is very similar to Φ. The proof
in this case essentially follows the lines of that of Theorem 2.2, and so we omit
the details.

Assume now that, in step PHC2, we have ai = αi − 1 for all i. There
are two possibilities depending on whether d is positive or not. First, consider
what happens if d is positive. In this case φ(�d�) = �d�, so that in step PHC2,
we have e := d. Since d does not change, PHC3 will undo what was done
in PHC1, so that b = a. Thus, in this case, Φ is the identity map at the level
of encodings. It is now easy to check that this map is well defined, and trivial
that it is a bijection.

Now, suppose that d is not positive. Clearly, Φ preserves cardinality,
because so does φ, and in the first and last steps, the changes take place in
pairs, with one element increasing by one and the other decreasing by the same
amount. We need to show that Φ is well defined in that � b

e� ∈ U(β). Therefore,
we need to check UC1–UC4.

Conditions UC1 and UC2 are true because of the bounds and equal-
ities which must be satisfied in steps PHC1 and PHC3 before making the
assignments, and because in PHC2, we know that φ(�d�) satisfies UCN2. To
check UC3, we assume ei = δi + 1 at the end of PHC3, and thus also at the
end of PHC2. Since φ(�d�) satisfies UCN2, we have that ei+1 > 0 after PHC2,
and thus also after PHC3. For the other assertion in UC3 assume, towards a
contradiction, that bi+1 < αi+1 − 1. Now, the value of bi+1 was not changed
in PHC3, because ei+1 > 0 after PHC2. Therefore, ai+1 = bi+1 < αi+1 − 1,
which contradicts the fact that ai = αi − 1 for all i. We also handle UC4 by
contradiction, assuming that bi > 0 but ei = 0. Under these circumstances, ei

would have been reassigned to be 1 in PHC3. Thus, we have shown that all
four conditions for a filter are satisfied.
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Finally, we define Φ
−1

by (6) with Φ replaced by Φ. The demonstration
that this is well defined, and indeed, the inverse of Φ is much the same as the
proof for Φ, and so left to the reader. �

4. Comments and Open Questions

This section is devoted to some remarks and a number of open questions which
we hope the reader will be interested in pursuing.

4.1. Extending the Bijections

Even though the map Φ : Ik(β) → Uk(β) from Theorem 2.2 is not well defined
when condition (5) does not hold, it is possible to extend it to any value of k
if we restrict the map to a particular subset of ideals, namely those for which
φ can be applied in step PH2. We continue to use the notation established at
the beginning of Sect. 2.2. We say that an ideal of F (β) encoded by �a

d� is
restricted if, in addition to IF1–IF4, it satisfies the two conditions
IF5 d1 ≤ δ1,
IF6 either d� 
= 1 or a�+1 < α�+1 − 1.

Note that I = �d1, d2, . . . , d�� is a restricted ideal of the gate G(δ1, δ2, . . . , δ�)
if and only if

I ′ =
⌊

1 0 · · · 0 1
d1 d2 · · · d�

⌋

is a restricted ideal of the fence F (1, δ1, 1, δ2, . . . , δ�, 1). Indeed, IF5 is the first
condition in I3. And since α�+1 − a�+1 = 1, we have a�+1 = α�+1 − 1, and so
IF6 reduces to the second condition in I3.

Similarly, we say that a filter of F (β) encoded by � b
e� is restricted if, in

addition to UF1–UF4, it satisfies
UF5 e� ≤ δ�,
UF6 either e1 
= 1 or b1 < α1 − 1.

Denote by Ir
k(β) and Ur

k (β) the subsets of restricted ideals in Ik(β) and re-
stricted filters in Uk(β), respectively. The reader should keep in mind that
this notation refers to restricted ideals and filters in fences, not gates. If
k satisfies (5), then conditions IF5–IF6 and UF5–UF6 always hold, and so,
Ir

k(β) = Ik(β) and Ur
k (β) = Uk(β) in this case.

A slight adaptation of the proof of Theorem 2.2 demonstrates the follow-
ing.

Theorem 4.1. Let β = (β1, β2, . . . , β2�+1). For any k, the map Φ : Ir
k(β) →

Ur
k (β) defined by PH1–PH3 is a bijection. �

Question 4.2. Is it possible to give an injective proof of Theorem 1.2 using a
variant of Φ?

For example, Theorem 4.1 reduces the problem of comparing the number
of ideals and filters of size k to the special case of ideals and filters that fail
to satisfy IF5–IF6 and UF5–UF6. Ideals that fail to satisfy IF5 (respectively,
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IF6) are in bijection with ideals of the fence obtained by removing the first
(respectively, last) two segments, and similarly for filters.

In a similar vein, we wonder whether it is possible to use a variant of
Φ to give an injective proof of the following conjecture of Kantarcı Oğuz and
Ravichandran.

Conjecture 4.3. [11] If β = (β1, β2, . . . , β2�), then r(β) is unimodal except when
β = (1, k, 1, k) or (k, 1, k, 1) for some k ≥ 1.

4.2. Log-Concavity

Another important property of some real sequences is log-concavity. Call a0, a1,
. . . , an log-concave if

a2
i ≥ ai−1ai+1

for all 0 < i < n. It is well known, and easy to prove, that if a sequence
contains only positive reals then log-concavity implies unimodality. It is not
true that r(β) is always log-concave, as can be seen in the example after
Conjecture 1.1 where β = (1, 1) and r(β) : 1, 2, 1, 1. It is also possible for r(β)
to be unimodal, but not log-concave; for example, when β = (1, 1, 1, 1, 1, 1),
we have r(β) : 1, 3, 3, 4, 3, 1. This raises the following question.

Question 4.4. For which β are r(β) or r(β) log-concave? Even if the whole
sequence is not log-concave, is there a long portion of it which is?

4.3. Chain Decompositions

In [13], McConville, Sagan, and Smyth made another conjecture which implies
Theorem 1.2 but remains open. It has to do with certain chain decompositions
of posets. Let (P,�) be a poset. If x, y ∈ P , then an x--y chain in P is a
totally ordered subset C : x1 � x2 � . . . � xl with x = x1 and y = xl. Call C
saturated if xi+1 covers xi for all 1 ≤ i < l. A chain decomposition (CD) of P
is a partition P = �iCi where the Ci are saturated chains.

Suppose now that P is ranked with rank function rk . The center of a
saturated x–y chain C is the average

cen C =
rkx + rk y

2
.

Let n be the maximum rank of an element of P. Call a saturated chain sym-
metric if cenC = n/2. A symmetric chain decomposition, or SCD, is a chain
decomposition all of whose chains are symmetric. It is easy to see that if P
admits an SCD, then its rank sequence is symmetric and unimodal. Having an
SCD also implies that P has the strong Sperner property as discussed in the
survey article of Greene and Kleitman [10]. Greene and Kleitman also gave a
famous SCD of the Boolean algebra of all subsets of a finite set [9].

There is an analogue of SCDs for top and bottom interlacing rank se-
quences. As in the previous paragraph, let P be ranked with maximum rank
n. Call a chain decomposition of P top centered, or a TCD, if for every chain
C in the decomposition, we have cen C = n/2 or (n + 1)/2. Again, a simple
argument shows that if P has a TCD, then its rank sequence is top interlacing.
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Similarly, a bottom-centered chain decomposition, or BCD, has all chains sat-
isfying cen C = n/2 or (n − 1)/2. As expected, this property implies a bottom
interlacing rank sequence.

Conjecture 4.5. [13] The lattice L(β) admits either an SCD, BCD, or TCD
consistent with Theorem 1.2.

McConville, Sagan, and Smyth were able to prove this conjecture using
modifications of the Greene–Kleitman SCD whenever β has a most three parts
or is of the form β = (k, 1, k, 1, . . . , k, 1, l) for some 1 ≤ l ≤ k. Frustratingly,
there seems to be an inductive procedure which always produces a CD of the
desired type for F (β), even though it has not been possible to prove that
it always works. Let P be any finite poset and let L be the corresponding
distributive lattice of lower order ideals. Let x1, x2, . . . , xn be a linear extension
of P. Then, any subset of P can be written as an increasing sequence with
respect to this extension. For example, the fence F (2, 4, 1) in Fig. 1 has linear
extension

x7, x8, x6, x5, x4, x1, x2, x3

which would associate the ideal I = {x1, x6, x7, x8} with the sequence x7, x8, x6,
x1. Therefore, any two subsets can now be compared using lexicographic order
on their sequences. A corresponding lexicographic chain decomposition or LCD
is L = C1 � · · · � Cl obtained as follows. Suppose C1, . . . , Ci−1 have been con-
structed and let L′ = C1 � · · · �Ci−1. We now construct Ci : I1 � I2 � · · ·� Ij .
Suppose that the smallest rank of an element of the set difference L − L′ is
r. Choose the lexicographically smallest element of L − L′ having rank r to
be I1. Let I2 be the lexicographically smallest element of L − L′ which covers
I1. Continue in this way until it is not possible to pick a covering element of
the current ideal for Ci from L − L′, at which point the chain terminates. We
iterate this construction until all elements of L are in a chain.

Question 4.6. [13] Given β, is there a linear extension of F (β) whose corre-
sponding LCD is an SCD, BCD, or TCD of L(β) consistent with Theorem 1.2?

The difficulty in proving this conjecture is not that it is hard to find such
a linear extension. Indeed, so many linear extensions give a CD of the desired
type that it is hard to find a common feature which runs through some subset
of them.

4.4. Distributive Lattices

By the Fundamental Theorem of Finite Distributive Lattices, every distribu-
tive lattice L can be obtained as the set of lower order ideals of some poset P
ordered by inclusion. In this case, we write L = L(P ). Given what has been
discussed, the following is a natural question to ask.

Question 4.7. What conditions on a poset P imply that the rank sequence of
L(P ) satisfies conditions on sequences such as symmetry, unimodality, and so
forth? What conditions on P guarantee that L(P ) has an SCD, BCD, or TCD?
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4.5. Rowmotion

Fences also have connections with dynamical algebraic combinatorics. Informa-
tion about this relatively new area of combinatorics can be found in the survey
articles of Roby [15] or Striker [23]. Let G be a group acting on a finite set S
with orbits O. Consider a statistic on S, which is a map st : S → {0, 1, 2, . . .}.
Given a real constant c, we say that st is c-mesic if its average over any orbit
O is c, that is

st O
#O = c,

where st O =
∑

x∈O st x.

Given any poset P, there is a well-studied action called rowmotion on
L(P ), viewed as the set of lower order ideals of P. The generator of rowmotion is
the map ρ : L(P ) → L(P ) defined as follows. Given I ∈ L(P ), the antichain A
of its maximal elements generates an upper order ideal U. Define ρ(I) = L(P )−
U. Elizalde et al. [8] showed that rowmotion on L(β) has many interesting
properties, but they were unable to resolve the following conjecture.

Conjecture 4.8. Suppose k ≥ 2 and β = (k − 1, k, k, . . . , k, k − 1) where the
number of parts is odd. For I ∈ L(β), define st(I) = #I. Then, st is n/2-
mesic, where n = #F (β).
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